metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ-Fumarato-κ²Ο:Ο'-bis[tris(2-methyl-2-phenylpropyl)tin(IV)]

Xi-Cheng Liu, Ling Yin, Yu-Xi Sun and Lai-Jin Tian*

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: laijintian@163.com

Received 17 May 2007; accepted 18 May 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.101; data-to-parameter ratio = 21.3.

In the centrosymmetric title compound, $[Sn_2(C_{10}H_{13})_6(C_4H_2O_4)]$, the Sn atom adopts a distorted tetrahedral SnC₃O geometry, with a mean Sn—C distance of 2.143 (3) Å and with Sn—O = 2.070 (2) Å. A short Sn···O contact of 3.072 (4) Å is also present.

Related literature

For related structures, see: Tian *et al.* (2004, 2006); Tian, Sun, Yang & Ng (2005); Tian, Sun, Yang & Yang (2005).

For related literature, see: Chandrasekhar *et al.* (2002); Gielen *et al.* (2005).

Experimental

Crystal data $[Sn_2(C_{10}H_{13})_6(C_4H_2O_4)]$ $M_r = 1150.66$

Monoclinic, $P2_1/n$ a = 9.6017 (9) Å

b = 18.6352 (18) Å	
c = 16.5097 (16) Å	
$\beta = 91.985 (1)^{\circ}$	
V = 2952.3 (5) Å ³	
Z = 2	

Data collection

Bruker SMART APEX CCD area-	23553 measured reflections
detector diffractometer	6102 independent reflections
Absorption correction: multi-scan	4565 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.048$
$T_{\rm min} = 0.828, \ T_{\rm max} = 0.932$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 286 parameters $wR(F^2) = 0.101$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.67$ e Å $^{-3}$ 6102 reflections $\Delta \rho_{min} = -0.40$ e Å $^{-3}$

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-1}$

 $0.22 \times 0.10 \times 0.08 \text{ mm}$

T = 295 (2) K

Table 1 Selected bond lengths (Å).

Sn1-O1	2.070 (2)	Sn1-C3	2.142 (4)
Sn1-C13	2.140 (4)	Sn1-C23	2.145 (3)

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2424).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandrasekhar, V., Nagendran, S. & Baskar, V. (2002). Coord. Chem. Rev. 235, 1–52.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gielen, M., Biesemans, M. & Willem, R. (2005). Appl. Organomet. Chem. 19, 440–450.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tian, L.-J., Sun, Y.-X. & Ng, S. W. (2004). Acta Cryst. E60, m1752-m1753.
- Tian, L.-J., Sun, Y.-X., Yang, M. & Ng, S. W. (2005). Acta Cryst. E61, m74–m75.Tian, L.-J., Sun, Y.-X., Yang, M. & Yang, G.-M. (2005). Acta Cryst. E61, m1346–m1347.
- Tian, L.-J., Yu, F.-Y., Sun, Y.-X. & Liu, X.-C. (2006). Acta Cryst. E62, m488m489.

Acta Cryst. (2007). E63, m1758 [doi:10.1107/S1600536807024543]

μ -Fumarato- $\kappa^2 O: O'$ -bis[tris(2-methyl-2-phenylpropyl)tin(IV)]

X.-C. Liu, L. Yin, Y.-X. Sun and L.-J. Tian

Comment

The structural chemistry of organotin carboxylates continues to receive attention owing to their biological properties, especially their antitumour activities (Chandrasekhar *et al.*, 2002; Gielen *et al.*, 2005). Recently, we have reported several tris(2-methyl-2-phenylpropyl)tin carboxylates, such as bis[tris(2-methyl-2-phenylpropyl)tin(IV)] 3,4,5,6-tetrafluorophthalate (Tian *et al.*, 2004), bis[tris(2-methyl-2-phenylpropyl)tin(IV)] phthalate (Tian, Sun, Yang & Ng, 2005), tris(2-methyl-2phenylpropyl)tin pyridine-3-carboxylate (Tian, Sun, Yang & Yang, 2005) and tris(2-methyl-2-phenylpropyl)tin 2-phthalimidoacetate (Tian *et al.*, 2006), which all possess a distorted tetrahedral geometry. In the title compound, (I), tetrahedral coordination is also observed (Fig. 1 & Table 1). The Sn···O2 separation of 3.072 (4)Å indicates there is a weak interaction between these atoms, which distorts the tetrahedral geometry. The three Sn—C distances are almost identical. The Sn—O bond length in (I) is similar to that found in the carboxylate structures mentioned above.

Experimental

Bis[tris(2-methyl-2-phenylpropyl)tin] oxide (1.05 g, 1 mmol) and fumaric acid (0.12 g, 1 mmol) in toluene (50 ml) were refluxed for 3 h with azeotropic removal of water *via* a Dean-Stark trap. The resulting clear solution was evaporated under reduced pressure. The white solid obtained was purified by recrystallization from methanol, and crystals of (I) were obtained from a chloroform-hexane (1:1, v/v) solution by slow evaporation at 298 K (yield 83%, m.p. 422–423 K). Analysis, found: C 66.56, H 6.89%; calculated for C₆₄H₈₀O₄Sn₂: C 66.80, H 7.01%.

Refinement

The H atoms were placed at calculated positions (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

μ -Fumarato- $\kappa^2 O$, O'-bis[tris(2-methyl-2-phenylpropyl)tin(IV)]

Crystal data [Sn₂(C₁₀H₁₃)₆(C₄H₂O₄)]

 $F_{000} = 1192$

$M_r = 1150.66$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 9.6017 (9) Å
b = 18.6352 (18) Å
c = 16.5097 (16) Å
$\beta = 91.985 (1)^{\circ}$
$V = 2952.3 (5) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer	6102 independent reflections
Radiation source: fine-focus sealed tube	4565 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 295(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -12 \rightarrow 12$
$T_{\min} = 0.828, T_{\max} = 0.932$	$k = -23 \rightarrow 22$
23553 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.84P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
6102 reflections	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
286 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $D_{\rm x} = 1.294 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5-22.3^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 295 (2) KPrism, colourless $0.22 \times 0.10 \times 0.08 \text{ mm}$

Cell parameters from 4827 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.26662 (2)	0.875316 (12)	0.183016 (13)	0.03679 (9)
01	0.1351 (3)	0.93708 (15)	0.10958 (16)	0.0591 (7)
02	0.1864 (5)	0.87575 (19)	0.0013 (2)	0.1071 (14)
C1	0.1220 (5)	0.9236 (2)	0.0345 (3)	0.0626 (11)
C2	0.0287 (4)	0.9720 (2)	-0.0139 (2)	0.0552 (10)
H2	0.0110	0.9606	-0.0681	0.066*
C3	0.4650 (4)	0.89136 (19)	0.1303 (2)	0.0457 (9)
H3A	0.5190	0.8477	0.1378	0.055*
H3B	0.4496	0.8981	0.0725	0.055*
C4	0.5541 (4)	0.9550 (2)	0.1633 (2)	0.0474 (9)
C5	0.4787 (5)	1.0247 (2)	0.1402 (3)	0.0760 (14)
H5A	0.3932	1.0276	0.1685	0.114*
H5B	0.4587	1.0253	0.0828	0.114*
H5C	0.5369	1.0648	0.1548	0.114*
C6	0.6948 (4)	0.9532 (3)	0.1223 (3)	0.0793 (14)
H6A	0.7515	0.9924	0.1419	0.119*
H6B	0.6800	0.9575	0.0647	0.119*
H6C	0.7410	0.9086	0.1346	0.119*
C7	0.5821 (3)	0.94903 (13)	0.25515 (11)	0.0463 (9)
C8	0.6025 (3)	1.01064 (11)	0.30152 (17)	0.0678 (12)
H8	0.5989	1.0555	0.2769	0.081*
С9	0.6283 (3)	1.00515 (16)	0.38465 (16)	0.0858 (16)
H9	0.6420	1.0464	0.4157	0.103*
C10	0.6338 (3)	0.9381 (2)	0.42142 (11)	0.0814 (15)
H10	0.6511	0.9344	0.4770	0.098*
C11	0.6134 (3)	0.87645 (15)	0.37504 (16)	0.0726 (13)
H11	0.6171	0.8316	0.3996	0.087*
C12	0.5876 (3)	0.88194 (11)	0.29191 (16)	0.0578 (10)
H12	0.5740	0.8407	0.2609	0.069*
C13	0.1789 (4)	0.7698 (2)	0.1786 (2)	0.0561 (10)
H13A	0.1544	0.7571	0.2333	0.067*
H13B	0.0924	0.7725	0.1465	0.067*
C14	0.2641 (5)	0.7068 (2)	0.1450 (2)	0.0586 (11)
C15	0.2827 (5)	0.7185 (2)	0.0543 (2)	0.0705 (13)
H15A	0.3296	0.7633	0.0461	0.106*
H15B	0.1930	0.7195	0.0268	0.106*
H15C	0.3371	0.6800	0.0332	0.106*
C16	0.1767 (7)	0.6383 (2)	0.1551 (4)	0.0941 (18)
H16A	0.2246	0.5982	0.1325	0.141*
H16B	0.0878	0.6441	0.1275	0.141*
H16C	0.1632	0.6299	0.2117	0.141*
C17	0.4028 (3)	0.69769 (16)	0.19162 (18)	0.0671 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C18	0.4029 (4)	0.69271 (18)	0.27563 (19)	0.0906 (17)
H18	0.3196	0.6961	0.3025	0.109*
C19	0.5275 (6)	0.6826 (2)	0.31953 (18)	0.128 (3)
H19	0.5276	0.6793	0.3757	0.154*
C20	0.6521 (4)	0.6776 (2)	0.2794 (3)	0.143 (3)
H20	0.7354	0.6708	0.3088	0.172*
C21	0.6520 (3)	0.6825 (2)	0.1954 (3)	0.134 (3)
H21	0.7353	0.6791	0.1686	0.161*
C22	0.5274 (4)	0.69260 (18)	0.15152 (19)	0.0906 (16)
H22	0.5273	0.6959	0.0953	0.109*
C23	0.2213 (4)	0.9367 (2)	0.2888 (2)	0.0487 (9)
H23A	0.3047	0.9374	0.3237	0.058*
H23B	0.2033	0.9857	0.2718	0.058*
C24	0.0987 (4)	0.9124 (2)	0.3405 (2)	0.0580 (11)
C25	0.0768 (5)	0.9691 (3)	0.4075 (3)	0.0903 (17)
H25A	0.0043	0.9533	0.4419	0.135*
H25B	0.0507	1.0140	0.3829	0.135*
H25C	0.1618	0.9751	0.4391	0.135*
C26	-0.0320 (4)	0.9098 (3)	0.2859 (3)	0.0937 (17)
H26A	-0.0236	0.8718	0.2471	0.141*
H26B	-0.0433	0.9547	0.2580	0.141*
H26C	-0.1116	0.9011	0.3182	0.141*
C27	0.1309 (4)	0.84148 (16)	0.38337 (18)	0.0645 (12)
C28	0.2573 (3)	0.8341 (2)	0.4262 (2)	0.0865 (15)
H28	0.3213	0.8715	0.4272	0.104*
C29	0.2879 (5)	0.7707 (3)	0.4675 (2)	0.137 (3)
H29	0.3724	0.7657	0.4962	0.165*
C30	0.1921 (7)	0.71473 (19)	0.4660 (3)	0.161 (4)
H30	0.2126	0.6723	0.4936	0.193*
C31	0.0657 (6)	0.72215 (18)	0.4231 (3)	0.147 (4)
H31	0.0016	0.6847	0.4221	0.177*
C32	0.0351 (4)	0.7855 (2)	0.3818 (2)	0.099 (2)
H32	-0.0494	0.7905	0.3532	0.119*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04145 (15)	0.03912 (14)	0.02958 (13)	0.00480 (10)	-0.00185 (9)	-0.00045 (10)
01	0.0569 (16)	0.0752 (19)	0.0443 (16)	0.0170 (14)	-0.0124 (13)	0.0083 (14)
O2	0.154 (4)	0.100 (3)	0.065 (2)	0.063 (3)	-0.035 (2)	-0.0122 (19)
C1	0.070 (3)	0.064 (3)	0.053 (3)	0.012 (2)	-0.013 (2)	0.002 (2)
C2	0.059 (3)	0.064 (3)	0.042 (2)	0.005 (2)	-0.0093 (18)	0.0083 (19)
C3	0.044 (2)	0.053 (2)	0.041 (2)	0.0044 (16)	0.0028 (16)	-0.0011 (16)
C4	0.053 (2)	0.052 (2)	0.038 (2)	-0.0074 (18)	-0.0001 (17)	0.0064 (16)
C5	0.107 (4)	0.056 (3)	0.063 (3)	-0.010 (3)	-0.025 (3)	0.019 (2)
C6	0.063 (3)	0.122 (4)	0.054 (3)	-0.029 (3)	0.012 (2)	0.003 (3)
C7	0.0359 (19)	0.059 (2)	0.045 (2)	-0.0005 (17)	0.0035 (16)	0.0058 (17)
C8	0.083 (3)	0.061 (3)	0.059 (3)	0.001 (2)	-0.006 (2)	-0.004 (2)

C9	0.103 (4)	0.100 (4)	0.052 (3)	0.014 (3)	-0.015 (3)	-0.019 (3)
C10	0.066 (3)	0.137 (5)	0.040 (2)	0.005 (3)	-0.007 (2)	0.009 (3)
C11	0.060 (3)	0.099 (4)	0.058 (3)	-0.006 (3)	-0.011 (2)	0.031 (3)
C12	0.050 (2)	0.066 (3)	0.057 (2)	-0.005 (2)	-0.0041 (19)	0.014 (2)
C13	0.066 (3)	0.050 (2)	0.052 (2)	-0.012 (2)	0.010 (2)	-0.0066 (18)
C14	0.093 (3)	0.039 (2)	0.045 (2)	-0.002 (2)	0.012 (2)	-0.0017 (17)
C15	0.102 (4)	0.062 (3)	0.047 (2)	0.008 (3)	0.003 (2)	-0.013 (2)
C16	0.139 (5)	0.048 (3)	0.096 (4)	-0.025 (3)	0.012 (4)	-0.007 (3)
C17	0.107 (4)	0.038 (2)	0.056 (3)	0.013 (2)	0.005 (3)	-0.0013 (19)
C18	0.138 (5)	0.077 (3)	0.056 (3)	0.012 (3)	-0.007 (3)	0.015 (3)
C19	0.197 (8)	0.087 (4)	0.096 (5)	0.025 (5)	-0.053 (5)	0.010 (4)
C20	0.156 (7)	0.100 (5)	0.169 (8)	0.060 (5)	-0.077 (6)	-0.004 (5)
C21	0.128 (6)	0.117 (6)	0.156 (7)	0.054 (5)	-0.019 (5)	-0.007 (5)
C22	0.104 (4)	0.080 (4)	0.087 (4)	0.037 (3)	-0.004 (3)	0.002 (3)
C23	0.054 (2)	0.053 (2)	0.039 (2)	0.0036 (18)	0.0033 (17)	-0.0132 (17)
C24	0.045 (2)	0.078 (3)	0.052 (2)	-0.002 (2)	0.0084 (18)	-0.026 (2)
C25	0.099 (4)	0.098 (4)	0.076 (3)	0.007 (3)	0.029 (3)	-0.042 (3)
C26	0.040 (2)	0.154 (5)	0.087 (4)	0.010 (3)	0.007 (2)	-0.030 (4)
C27	0.073 (3)	0.075 (3)	0.047 (2)	-0.021 (3)	0.031 (2)	-0.017 (2)
C28	0.093 (4)	0.098 (4)	0.069 (3)	0.007 (3)	0.016 (3)	0.021 (3)
C29	0.183 (8)	0.148 (7)	0.083 (4)	0.035 (6)	0.038 (5)	0.043 (5)
C30	0.288 (13)	0.109 (6)	0.091 (5)	0.019 (7)	0.092 (7)	0.033 (5)
C31	0.238 (11)	0.104 (6)	0.106 (6)	-0.060 (6)	0.099 (7)	-0.021 (5)
C32	0.122 (5)	0.104 (4)	0.075 (4)	-0.042 (4)	0.055 (3)	-0.025 (3)

Geometric parameters (Å, °)

Sn1—O1	2.070 (2)	C15—H15B	0.9600
Sn1—C13	2.140 (4)	C15—H15C	0.9600
Sn1—C3	2.142 (4)	C16—H16A	0.9600
Sn1—C23	2.145 (3)	C16—H16B	0.9600
01—C1	1.267 (5)	C16—H16C	0.9600
O2—C1	1.225 (5)	C17—C18	1.3900
C1—C2	1.485 (5)	C17—C22	1.3900
C2—C2 ⁱ	1.273 (7)	C18—C19	1.3900
С2—Н2	0.9300	C18—H18	0.9300
C3—C4	1.549 (5)	C19—C20	1.3900
С3—НЗА	0.9700	C19—H19	0.9300
С3—Н3В	0.9700	C20—C21	1.3900
C4—C5	1.529 (5)	C20—H20	0.9300
C4—C6	1.532 (5)	C21—C22	1.3900
C4—C7	1.535 (4)	C21—H21	0.9300
С5—Н5А	0.9600	C22—H22	0.9300
С5—Н5В	0.9600	C23—C24	1.545 (5)
С5—Н5С	0.9600	C23—H23A	0.9700
С6—Н6А	0.9600	C23—H23B	0.9700
С6—Н6В	0.9600	C24—C26	1.521 (6)
С6—Н6С	0.9600	C24—C27	1.526 (5)
С7—С8	1.3900	C24—C25	1.548 (5)

C7—C12	1.3900	C25—H25A	0.9600
C8—C9	1.3900	C25—H25B	0.9600
C8—H8	0.9300	С25—Н25С	0.9600
C9—C10	1.3900	C26—H26A	0.9600
С9—Н9	0.9300	C26—H26B	0.9600
C10—C11	1.3900	С26—Н26С	0.9600
C10—H10	0.9300	C27—C28	1.3900
C11—C12	1.3900	C27—C32	1.3900
C11—H11	0.9300	C28—C29	1.3900
C12—H12	0.9300	C28—H28	0.9300
C13—C14	1.544 (5)	C29—C30	1.3900
C13—H13A	0.9700	С29—Н29	0.9300
C13—H13B	0.9700	C30—C31	1.3900
C14—C17	1.525 (5)	С30—Н30	0.9300
C14—C15	1.529 (5)	C31—C32	1.3900
C14—C16	1.540 (6)	C31—H31	0.9300
С15—Н15А	0.9600	С32—Н32	0.9300
O1—Sn1—C13	105.04 (14)	C14—C15—H15C	109.5
O1—Sn1—C3	102.57 (13)	H15A—C15—H15C	109.5
C13—Sn1—C3	117.96 (14)	H15B—C15—H15C	109.5
O1—Sn1—C23	92.50 (13)	C14—C16—H16A	109.5
C13—Sn1—C23	115.29 (14)	C14—C16—H16B	109.5
C3—Sn1—C23	117.68 (14)	H16A—C16—H16B	109.5
C1—O1—Sn1	120.0 (3)	C14—C16—H16C	109.5
O2—C1—O1	123.2 (4)	H16A—C16—H16C	109.5
O2—C1—C2	120.4 (4)	H16B—C16—H16C	109.5
O1—C1—C2	116.3 (4)	C18—C17—C22	120.0
C2 ⁱ —C2—C1	124.4 (5)	C18—C17—C14	118.8 (3)
C2 ⁱ —C2—H2	117.8	C22-C17-C14	121.2 (3)
C1—C2—H2	117.8	C19—C18—C17	120.0
C4—C3—Sn1	116.9 (2)	C19—C18—H18	120.0
С4—С3—НЗА	108.1	C17—C18—H18	120.0
Sn1—C3—H3A	108.1	C18—C19—C20	120.0
С4—С3—Н3В	108.1	C18—C19—H19	120.0
Sn1—C3—H3B	108.1	С20—С19—Н19	120.0
НЗА—СЗ—НЗВ	107.3	C21—C20—C19	120.0
C5—C4—C6	109.0 (3)	C21—C20—H20	120.0
C5—C4—C7	111.9 (3)	С19—С20—Н20	120.0
C6—C4—C7	107.9 (3)	C20—C21—C22	120.0
C5—C4—C3	108.2 (3)	C20-C21-H21	120.0
C6—C4—C3	108.2 (3)	C22—C21—H21	120.0
C7—C4—C3	111.6 (3)	C21—C22—C17	120.0
С4—С5—Н5А	109.5	C21—C22—H22	120.0
C4—C5—H5B	109.5	C17—C22—H22	120.0
H5A—C5—H5B	109.5	C24—C23—Sn1	118.3 (2)
C4—C5—H5C	109.5	C24—C23—H23A	107.7
Н5А—С5—Н5С	109.5	Sn1—C23—H23A	107.7
H5B—C5—H5C	109.5	C24—C23—H23B	107.7

С4—С6—Н6А	109.5	Sn1—C23—H23B	107.7
C4—C6—H6B	109.5	H23A—C23—H23B	107.1
H6A—C6—H6B	109.5	C26—C24—C27	113.3 (4)
С4—С6—Н6С	109.5	C26—C24—C23	108.1 (4)
Н6А—С6—Н6С	109.5	C27—C24—C23	111.3 (3)
H6B—C6—H6C	109.5	C26—C24—C25	108.4 (4)
C8—C7—C12	120.0	C27—C24—C25	106.9 (3)
C8—C7—C4	120.1 (2)	C23—C24—C25	108.7 (3)
C12—C7—C4	119.9 (2)	С24—С25—Н25А	109.5
С7—С8—С9	120.0	С24—С25—Н25В	109.5
С7—С8—Н8	120.0	H25A—C25—H25B	109.5
С9—С8—Н8	120.0	С24—С25—Н25С	109.5
C8—C9—C10	120.0	H25A—C25—H25C	109.5
С8—С9—Н9	120.0	H25B—C25—H25C	109.5
С10—С9—Н9	120.0	C24—C26—H26A	109.5
C11—C10—C9	120.0	С24—С26—Н26В	109.5
С11—С10—Н10	120.0	H26A—C26—H26B	109.5
С9—С10—Н10	120.0	С24—С26—Н26С	109.5
C12—C11—C10	120.0	H26A—C26—H26C	109.5
C12—C11—H11	120.0	H26B—C26—H26C	109.5
C10—C11—H11	120.0	C28—C27—C32	120.0
C11—C12—C7	120.0	C28—C27—C24	118.7 (3)
C11—C12—H12	120.0	C32—C27—C24	121.2 (3)
C7—C12—H12	120.0	C29—C28—C27	120.0
C14—C13—Sn1	119.9 (3)	C29—C28—H28	120.0
C14—C13—H13A	107.4	C27—C28—H28	120.0
Sn1—C13—H13A	107.4	C30—C29—C28	120.0
C14—C13—H13B	107.4	С30—С29—Н29	120.0
Sn1—C13—H13B	107.4	С28—С29—Н29	120.0
H13A—C13—H13B	106.9	C29—C30—C31	120.0
C17—C14—C15	112.4 (4)	С29—С30—Н30	120.0
C17—C14—C16	108.8 (4)	С31—С30—Н30	120.0
C15—C14—C16	107.9 (4)	C30—C31—C32	120.0
C17—C14—C13	111.6 (3)	С30—С31—Н31	120.0
C15-C14-C13	108.9 (3)	C32—C31—H31	120.0
C16—C14—C13	107.1 (4)	C31—C32—C27	120.0
C14—C15—H15A	109.5	С31—С32—Н32	120.0
C14—C15—H15B	109.5	С27—С32—Н32	120.0
H15A—C15—H15B	109.5		
C13—Sn1—O1—C1	-63.6 (3)	C16—C14—C17—C18	-66.0 (4)
C3—Sn1—O1—C1	60.3 (3)	C13—C14—C17—C18	51.9 (4)
C23—Sn1—O1—C1	179.4 (3)	C15-C14-C17-C22	-7.0 (4)
Sn1—O1—C1—O2	-1.6 (6)	C16-C14-C17-C22	112.4 (3)
Sn1—O1—C1—C2	-178.3 (3)	C13—C14—C17—C22	-129.6 (3)
O2—C1—C2—C2 ⁱ	-171.2 (6)	C22—C17—C18—C19	0.0
01—C1—C2—C2 ⁱ	5.6 (8)	C14—C17—C18—C19	178.4 (3)
O1—Sn1—C3—C4	90.0 (3)	C17—C18—C19—C20	0.0
C13—Sn1—C3—C4	-155.2 (3)	C18—C19—C20—C21	0.0

C23—Sn1—C3—C4	-9.6 (3)	C19—C20—C21—C22	0.0
Sn1—C3—C4—C5	-66.3 (4)	C20-C21-C22-C17	0.0
Sn1—C3—C4—C6	175.8 (3)	C18—C17—C22—C21	0.0
Sn1—C3—C4—C7	57.2 (4)	C14—C17—C22—C21	-178.4 (3)
C5—C4—C7—C8	-30.0 (4)	O1—Sn1—C23—C24	90.3 (3)
C6—C4—C7—C8	89.8 (3)	C13—Sn1—C23—C24	-17.6 (4)
C3—C4—C7—C8	-151.4 (2)	C3—Sn1—C23—C24	-164.1 (3)
C5-C4-C7-C12	150.1 (3)	Sn1-C23-C24-C26	-56.6 (4)
C6—C4—C7—C12	-90.0 (3)	Sn1—C23—C24—C27	68.5 (4)
C3—C4—C7—C12	28.8 (4)	Sn1—C23—C24—C25	-174.0 (3)
C12—C7—C8—C9	0.0	C26—C24—C27—C28	171.4 (3)
C4—C7—C8—C9	-179.8 (3)	C23—C24—C27—C28	49.3 (4)
C7—C8—C9—C10	0.0	C25—C24—C27—C28	-69.3 (4)
C8—C9—C10—C11	0.0	C26—C24—C27—C32	-10.2 (4)
C9—C10—C11—C12	0.0	C23—C24—C27—C32	-132.4 (3)
C10-C11-C12-C7	0.0	C25—C24—C27—C32	109.1 (3)
C8—C7—C12—C11	0.0	C32—C27—C28—C29	0.0
C4—C7—C12—C11	179.8 (3)	C24—C27—C28—C29	178.4 (3)
O1—Sn1—C13—C14	118.8 (3)	C27—C28—C29—C30	0.0
C3—Sn1—C13—C14	5.3 (4)	C28—C29—C30—C31	0.0
C23—Sn1—C13—C14	-141.0 (3)	C29—C30—C31—C32	0.0
Sn1—C13—C14—C17	57.4 (4)	C30—C31—C32—C27	0.0
Sn1—C13—C14—C15	-67.2 (4)	C28—C27—C32—C31	0.0
Sn1—C13—C14—C16	176.4 (3)	C24—C27—C32—C31	-178.4 (3)
C15-C14-C17-C18	174.6 (3)		
C			

Symmetry codes: (i) -x, -y+2, -z.

Fig. 1